DEFINING TOMORROW'S VASCULAR STRATEGIES
×
Register now to R3i !
Your login
Your password
Confirm your password
Your email
I agree to receive the R3i newsletter
Mar 2024
The microvascular-macrovascular interplay: the next target?
Jan 2024
Targeting residual cardiovascular risk: what’s in the pipeline?
Sep 2023
Remnant cholesterol – evolving evidence
Jul 2023
Call to action on residual stroke risk
Apr 2023
Residual risk in 2023: where to?
Dec 2022
Lipid-related residual risk: lessons from PROMINENT?
Sep 2022
Residual cardiovascular risk: is apolipoprotein B the preferred marker?
Jul 2022
Residual vascular risk in chronic kidney disease: new options on the horizon
Feb 2022
Looking back at 2021 – what made the news?
Nov 2021
New ACC guidance addresses unmet clinical needs for high-risk patients with mild to moderate hypertriglyceridemia
Sep 2021
Residual vascular risk: What matters?
Aug 2021
Understanding vein graft failure: a role for PPARalpha in pathobiology
May 2021
Residual cardiovascular risk: how to identify?
Apr 2021
Metabolic syndrome and COVID-19
Mar 2021
Elevated triglyceride: linking ASCVD and dementia
Feb 2021
Does SPPARMα offer new opportunities in metabolic syndrome and NAFLD?
Jan 2021
Omega-3 fatty acids for residual cardiovascular risk: more questions than answers
Oct 2020
Targeting triglycerides: Novel agents expand the field
Jul 2020
Why multidrug approaches are needed in NASH: insights with pemafibrate
Jun 2020
Triglyceride-rich remnant lipoproteins: a new therapeutic target in aortic valve stenosis?
Mar 2020
Lowering triglycerides or low-density lipoprotein cholesterol: which provides greater clinical benefit?
Feb 2020
The omega-3 fatty acid conundrum
Dec 2019
Focus on stroke: more input to address residual cardiovascular risk
Jul 2019
International Expert Consensus on Selective Peroxisome Proliferator-Activated Receptor Alpha Modulator (SPPARMα): New opportunities for targeting modifiable residual cardiovascular risk
Nov 2018
Residual cardiovascular risk: triglyceride metabolism and genetics provide a key
Jul 2018
The clinical gap for managing residual cardiovascular risk: will new approaches make the difference?
Apr 2018
Residual cardiovascular risk: refocus on a multifactorial approach
Feb 2018
Optimizing treatment benefit: the tenet of personalized medicine
Jan 2018
Addressing residual cardiovascular risk – back to basics?
Dec 2017
Residual risk of heart failure: how to address this global epidemic?
Oct 2017
Remnants and residual cardiovascular risk: triglycerides or cholesterol?
Jul 2017
Targeting residual cardiovascular risk: lipids and beyond…
Jun 2017
Why we need to re-focus on Latin America.
Apr 2017
Residual cardiovascular risk in the Middle East: a perfect storm in the making
Feb 2017
A global call to action on residual cardiovascular risk
Dec 2016
SPPARM?: more than one way to tackle residual risk
Oct 2016
Remnants linked with diabetic myocardial dysfunction
Sep 2016
New study links elevated triglycerides with plaque progression
Aug 2016
Atherogenic dyslipidaemia: a risk factor for silent coronary artery disease
Jul 2016
SPPARM?: a concept becomes clinical reality
Jun 2016
Remnant cholesterol back in the news
May 2016
Back to the future: triglycerides revisited
Apr 2016
Unravelling the heritability of triglycerides and coronary risk
Mar 2016
Will residual cardiovascular risk meet its nemesis in 2016?
Feb 2016
Tackling residual cardiovascular risk: a case for targeting postprandial triglycerides?
Jan 2016
Looking back at 2015: lipid highlights
Dec 2015
Legacy effects in cardiovascular prevention
Nov 2015
Residual cardiovascular risk: it’s not just lipids!
Oct 2015
Addressing residual vascular risk: beyond pharmacotherapy
Sep 2015
Back to basics: triglyceride-rich lipoproteins, remnants and residual vascular risk
Jul 2015
Beyond the PCSK9 decade: what's next?
May 2015
Do we need new lipid biomarkers for residual cardiovascular risk?
Apr 2015
The Residual Risk Debate Hots Up: Lowering LDL-C or lowering remnant cholesterol?
Mar 2015
Call for action on stroke
Feb 2015
Triglycerides: the tide has turned
Jan 2015
Post IMPROVE-IT: Where to now for residual risk?
Dec 2014
R3i publishes new Call to Action paper: Residual Microvascular Risk in Type 2 Diabetes in 2014: Is it Time for a Re-Think?
Sep 2014
Targeting residual vascular risk: round-up from ESC Congress 2014 and beyond
Jul 2014
Lipid-related residual cardiovascular risk: a new therapeutic target on the horizon
Mar 2014
Non-HDL-C and residual cardiovascular risk: the Lp(a) perspective
Feb 2014
REALIST Micro, atherogenic dyslipidaemia and residual microvascular risk
Jan 2014
Looking back at 2013: what have we learned about residual vascular risk?
Dec 2013
Long-overdue US guidelines for lipid management oversimplify the evidence
Nov 2013
Triglycerides and residual cardiovascular risk: where now?
Oct 2013
How to target residual cardiovascular risk?
Sep 2013
The Residual Vascular Risk Conundrum: Why we should target atherogenic dyslipidaemia
Jul 2013
Targeting atherogenic dyslipidemia: we need to do better
Apr 2013
Is PCSK9- targeted therapy the new hope for residual risk?
Mar 2013
Scope for multifocal approaches for reducing residual cardiovascular risk?
Feb 2013
Renewing the R3i call to action: Now more than ever we need to target and treat residual cardiovascular risk
Jan 2013
Time for a re-think on guidelines to reduce residual microvascular risk in diabetes?
Jan 2013
Addressing the residual burden of CVD in renal impairment: do PPARa agonists provide an answer?
Jan 2013
Re-evaluating options for residual risk post-HPS2-THRIVE : are SPPARMs the answer?
Dec 2012
Dysfunctional HDL: an additional target for reducing residual risk
Nov 2012
Egg consumption: a hidden residual risk factor
Oct 2012
Call to action: re-emphasising the importance of targeting residual vascular risk
Jun 2012
Time to prioritise atherogenic dyslipidaemia to reduce residual microvascular risk?
Jan 2012
Residual vascular risk in chronic kidney disease: an overlooked high-risk group
Dec 2011
Introducing the HDL Resource Center: HDL science now available for clinicians
Oct 2011
Targeting reverse cholesterol transport: the future of residual vascular risk reduction?
Sep 2011
After SPARCL: Targeting cardio-cerebrovascular metabolic risk and thrombosis to reduce residual risk of stroke
Jul 2011
Challenging the conventional wisdom: Lessons from the FIELD study on diabetic nephropathy
Jul 2010
ACCORD Eye Study: a milestone in residual microvascular risk reduction for patients with type 2 diabetes
May 2010
Lipids and residual risk of coronary heart disease in statin-treated patients
Mar 2010
ACCORD Lipid Study brings new hope to people with type 2 diabetes and atherogenic dyslipidemia
Mar 2010
Reducing residual risk of diabetic nephropathy: the role of lipoproteins
Dec 2009
ARBITER 6-HALTS: Implications for residual cardiovascular risk
Nov 2009
Microvascular event risk reduction in type 2 diabetes: New evidence from the FIELD study
Aug 2009
Fasting versus nonfasting triglycerides: Importance of triglyceride-regulating genetic polymorphisms to residual cardiovascular risk
Jul 2009
Residual risk of microvascular complications of diabetes: is intensive multitherapy the solution?
Apr 2009
Reducing residual vascular risk: modifiable and non modifiable residual vascular risk factors
Jan 2009
Micro- and macrovascular residual risk: one of the most challenging health problems of the moment
Nov 2008
Treated dyslipidemic patients remain at high residual risk of vascular events

R3i Editorial

8 June 2015
Targeting triglycerides: what lies on the horizon for novel therapies?
Prof. Jean Charles Fruchart, Prof. Michel Hermans, Prof. Pierre Amarenco
An Editorial from the R3i Trustees
 
Prof. Jean Charles Fruchart, Prof. Michel Hermans, Prof. Pierre Amarenco Accumulating evidence strengthens the case for consideration of an appropriate marker of triglyceride (TG)-rich lipoproteins in guidelines for the management of dyslipidaemia.1 The consensus of opinion from epidemiologic, genetic and mechanistic studies supports remnant cholesterol as a possible contender, although apolipoprotein (apo) CIII may represent an alternative approach. However, in translating such evidence to the clinic, what are the available therapeutic options?

To date, fibrates (peroxisome proliferator-activated receptor alpha [PPAR-alpha] ligands), represent the preferable approach to therapeutic targeting of elevated TG to reduce residual vascular risk. Analyses have shown that these agents are especially effective in patients with elevated TG and low high-density lipoprotein cholesterol (HDL-C), against a background of well-controlled low-density lipoprotein cholesterol (LDL-C) levels with statin therapy.2 There is also evidence of benefit in reducing the residual risk of diabetic microvascular complications with fenofibrate.3,4 While there is undoubtedly a clear rationale for definitive evidence from a clinical trial with a fibrate specifically in statin-treated non-diabetic patients with atherogenic dyslipidaemia, it is also recognised that these agents have limitations in terms of potency, tolerability and potential for drug interactions. New options are needed.

So what is the line-up for potential contenders to supersede the fibrates?

Insights from the 17th International Symposium on Atherosclerosis (ISA), held in Amsterdam, the Netherlands, suggest a number of agents with potential. Perhaps the first in line in terms of development are the selective PPAR alpha modulators (SPPARM?s), which offer the advantages of improved selectivity and potency compared with available fibrates.5 K-877 is a SPPARM? in advanced development, with evidence of a favourable benefit versus risk ratio in patients with atherogenic dyslipidaemia from phase II and III clinical trials. To take this agent forward, longer-term trials assessing the impact of this therapy on clinical outcomes are clearly the next step; we await news of such developments.

Beyond the SPPARM?s, what are the other therapeutic possibilities? Antisense agents to apoCIII may represent one approach. ApoCIII plays a key role in hepatic assembly and secretion of TG-rich lipoproteins and also has been shown to promote proinflammatory responses in vascular cells. Phase I data show dose-dependent reductions in plasma apoC-III concentration (by up to ?80%), together with lowering of TG levels (by up to ?50%) and no clinically meaningful adverse signals, although clearly longer-term studies in the target patient population are needed.6,7

Monoclonal antibody therapy may represent another approach, already tested in the management of high cardiovascular risk patients with elevated LDL-C levels with treatments targeting PCSK9. Such agents may offer advantages over pharmacologic therapy given their high specificity and long half-life, offering the possibility of less frequent administration than current therapies. On the horizon is the possibility of monoclonal antibody therapy targeting angiopoietin-like protein 3 (ANGPTL3), a key regulator of lipoprotein metabolism. Indeed, evidence from genetic studies suggests a possible role for ANGPTL3 at the crossroads of lipoprotein, fatty acid and glucose metabolism, and by inference, an attractive approach to target cardiometabolic risk.8 Preclinical studies have shown that inactivation of ANGPTL3 by monoclonal therapy reduces plasma levels of TG, very low-density lipoprotein cholesterol, and LDL-C, which implies increased clearance of TG-rich and TG-poor apoB-containing lipoproteins.9,10

This decade represents an exciting time in lipid research. The future holds the possibility of new approaches to targeting atherogenic dyslipidaemia, specifically elevated TG-rich apoB-containing lipoproteins, to reduce the high residual vascular risk that persists despite control of LDL-C levels.

References

1. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014;384:626-35.
2. Sacks FM, Carey VJ, Fruchart JC. Combination lipid therapy in type 2 diabetes. N Engl J Med;363:692-4.
3. Keech AC, Mitchell P, Summanen PA et al. FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007;370:1687–97.
4. Chew EY, Ambrosius WT, Davis MD et al; ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 2010;363:233–44.
5. Fruchart JC. Selective peroxisome proliferator-activated receptor ? modulators (SPPARM?): the next generation of peroxisome proliferator-activated receptor ?-agonists. Cardiovasc Diabetol 2013;12:82.
6. Graham MJ, Lee RG, Bell TA et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res 2013;112):1479-90.
7. Huff MW, Hegele RA. Apolipoprotein C-III: going back to the future for a lipid drug target. Circ Res 2013;112:1405-8.
8. Arca M, Minicocci I, Maranghi M. The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism. Curr Opin Lipidol 2013;24:313-20.
9. Wang Y, Gusarova V, Banfi s et al. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res 2015 [Epub ahead of print].
10. Gusarova V, Alexa CA, Wang Y et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res 2015 [Epub ahead of print].
?>