DEFINING TOMORROW'S VASCULAR STRATEGIES
×
Register now to R3i !
Your login
Your password
Confirm your password
Your email
I agree to receive the R3i newsletter
Mar 2024
The microvascular-macrovascular interplay: the next target?
Jan 2024
Targeting residual cardiovascular risk: what’s in the pipeline?
Sep 2023
Remnant cholesterol – evolving evidence
Jul 2023
Call to action on residual stroke risk
Apr 2023
Residual risk in 2023: where to?
Dec 2022
Lipid-related residual risk: lessons from PROMINENT?
Sep 2022
Residual cardiovascular risk: is apolipoprotein B the preferred marker?
Jul 2022
Residual vascular risk in chronic kidney disease: new options on the horizon
Feb 2022
Looking back at 2021 – what made the news?
Nov 2021
New ACC guidance addresses unmet clinical needs for high-risk patients with mild to moderate hypertriglyceridemia
Sep 2021
Residual vascular risk: What matters?
Aug 2021
Understanding vein graft failure: a role for PPARalpha in pathobiology
May 2021
Residual cardiovascular risk: how to identify?
Apr 2021
Metabolic syndrome and COVID-19
Mar 2021
Elevated triglyceride: linking ASCVD and dementia
Feb 2021
Does SPPARMα offer new opportunities in metabolic syndrome and NAFLD?
Jan 2021
Omega-3 fatty acids for residual cardiovascular risk: more questions than answers
Jul 2020
Why multidrug approaches are needed in NASH: insights with pemafibrate
Jun 2020
Triglyceride-rich remnant lipoproteins: a new therapeutic target in aortic valve stenosis?
Mar 2020
Lowering triglycerides or low-density lipoprotein cholesterol: which provides greater clinical benefit?
Feb 2020
The omega-3 fatty acid conundrum
Dec 2019
Focus on stroke: more input to address residual cardiovascular risk
Jul 2019
International Expert Consensus on Selective Peroxisome Proliferator-Activated Receptor Alpha Modulator (SPPARMα): New opportunities for targeting modifiable residual cardiovascular risk
Nov 2018
Residual cardiovascular risk: triglyceride metabolism and genetics provide a key
Jul 2018
The clinical gap for managing residual cardiovascular risk: will new approaches make the difference?
Apr 2018
Residual cardiovascular risk: refocus on a multifactorial approach
Feb 2018
Optimizing treatment benefit: the tenet of personalized medicine
Jan 2018
Addressing residual cardiovascular risk – back to basics?
Dec 2017
Residual risk of heart failure: how to address this global epidemic?
Oct 2017
Remnants and residual cardiovascular risk: triglycerides or cholesterol?
Jul 2017
Targeting residual cardiovascular risk: lipids and beyond…
Jun 2017
Why we need to re-focus on Latin America.
Apr 2017
Residual cardiovascular risk in the Middle East: a perfect storm in the making
Feb 2017
A global call to action on residual cardiovascular risk
Dec 2016
SPPARM?: more than one way to tackle residual risk
Oct 2016
Remnants linked with diabetic myocardial dysfunction
Sep 2016
New study links elevated triglycerides with plaque progression
Aug 2016
Atherogenic dyslipidaemia: a risk factor for silent coronary artery disease
Jul 2016
SPPARM?: a concept becomes clinical reality
Jun 2016
Remnant cholesterol back in the news
May 2016
Back to the future: triglycerides revisited
Apr 2016
Unravelling the heritability of triglycerides and coronary risk
Mar 2016
Will residual cardiovascular risk meet its nemesis in 2016?
Feb 2016
Tackling residual cardiovascular risk: a case for targeting postprandial triglycerides?
Jan 2016
Looking back at 2015: lipid highlights
Dec 2015
Legacy effects in cardiovascular prevention
Nov 2015
Residual cardiovascular risk: it’s not just lipids!
Oct 2015
Addressing residual vascular risk: beyond pharmacotherapy
Sep 2015
Back to basics: triglyceride-rich lipoproteins, remnants and residual vascular risk
Jul 2015
Beyond the PCSK9 decade: what's next?
Jun 2015
Targeting triglycerides: what lies on the horizon for novel therapies?
May 2015
Do we need new lipid biomarkers for residual cardiovascular risk?
Apr 2015
The Residual Risk Debate Hots Up: Lowering LDL-C or lowering remnant cholesterol?
Mar 2015
Call for action on stroke
Feb 2015
Triglycerides: the tide has turned
Jan 2015
Post IMPROVE-IT: Where to now for residual risk?
Dec 2014
R3i publishes new Call to Action paper: Residual Microvascular Risk in Type 2 Diabetes in 2014: Is it Time for a Re-Think?
Sep 2014
Targeting residual vascular risk: round-up from ESC Congress 2014 and beyond
Jul 2014
Lipid-related residual cardiovascular risk: a new therapeutic target on the horizon
Mar 2014
Non-HDL-C and residual cardiovascular risk: the Lp(a) perspective
Feb 2014
REALIST Micro, atherogenic dyslipidaemia and residual microvascular risk
Jan 2014
Looking back at 2013: what have we learned about residual vascular risk?
Dec 2013
Long-overdue US guidelines for lipid management oversimplify the evidence
Nov 2013
Triglycerides and residual cardiovascular risk: where now?
Oct 2013
How to target residual cardiovascular risk?
Sep 2013
The Residual Vascular Risk Conundrum: Why we should target atherogenic dyslipidaemia
Jul 2013
Targeting atherogenic dyslipidemia: we need to do better
Apr 2013
Is PCSK9- targeted therapy the new hope for residual risk?
Mar 2013
Scope for multifocal approaches for reducing residual cardiovascular risk?
Feb 2013
Renewing the R3i call to action: Now more than ever we need to target and treat residual cardiovascular risk
Jan 2013
Time for a re-think on guidelines to reduce residual microvascular risk in diabetes?
Jan 2013
Addressing the residual burden of CVD in renal impairment: do PPARa agonists provide an answer?
Jan 2013
Re-evaluating options for residual risk post-HPS2-THRIVE : are SPPARMs the answer?
Dec 2012
Dysfunctional HDL: an additional target for reducing residual risk
Nov 2012
Egg consumption: a hidden residual risk factor
Oct 2012
Call to action: re-emphasising the importance of targeting residual vascular risk
Jun 2012
Time to prioritise atherogenic dyslipidaemia to reduce residual microvascular risk?
Jan 2012
Residual vascular risk in chronic kidney disease: an overlooked high-risk group
Dec 2011
Introducing the HDL Resource Center: HDL science now available for clinicians
Oct 2011
Targeting reverse cholesterol transport: the future of residual vascular risk reduction?
Sep 2011
After SPARCL: Targeting cardio-cerebrovascular metabolic risk and thrombosis to reduce residual risk of stroke
Jul 2011
Challenging the conventional wisdom: Lessons from the FIELD study on diabetic nephropathy
Jul 2010
ACCORD Eye Study: a milestone in residual microvascular risk reduction for patients with type 2 diabetes
May 2010
Lipids and residual risk of coronary heart disease in statin-treated patients
Mar 2010
ACCORD Lipid Study brings new hope to people with type 2 diabetes and atherogenic dyslipidemia
Mar 2010
Reducing residual risk of diabetic nephropathy: the role of lipoproteins
Dec 2009
ARBITER 6-HALTS: Implications for residual cardiovascular risk
Nov 2009
Microvascular event risk reduction in type 2 diabetes: New evidence from the FIELD study
Aug 2009
Fasting versus nonfasting triglycerides: Importance of triglyceride-regulating genetic polymorphisms to residual cardiovascular risk
Jul 2009
Residual risk of microvascular complications of diabetes: is intensive multitherapy the solution?
Apr 2009
Reducing residual vascular risk: modifiable and non modifiable residual vascular risk factors
Jan 2009
Micro- and macrovascular residual risk: one of the most challenging health problems of the moment
Nov 2008
Treated dyslipidemic patients remain at high residual risk of vascular events

R3i Editorial

5 October 2020
Targeting triglycerides: Novel agents expand the field
Prof. Jean Charles Fruchart, Prof. Michel Hermans, Prof. Pierre Amarenco
An Editorial from the R3i Trustees
 
Prof. Jean Charles Fruchart, Prof. Michel Hermans, Prof. Pierre Amarenco Guidelines have long recognised that elevated triglycerides (TG) are a marker of cardiovascular risk 1. Indeed, TG and TG-rich lipoproteins are among the atherogenic lipids and lipoproteins believed to be both causal and prognostic factors for atherosclerotic cardiovascular disease (ASCVD) 2,3. To date, however, guideline groups provide ‘desirable TG levels’ rather than targets given limited definitive evidence from cardiovascular outcomes studies using conventional therapeutic approaches. Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA), has gained credence in the light of results from the landmark REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial) study 4, supported by the older JELIS (Japan Eicosapentaenoic acid (EPA) Lipid Intervention Study) 5. Guideline groups have now incorporated the results of REDUCE-IT in updated recommendations 6-8. Yet it is also evident that TG-lowering alone does not explain the benefit observed in REDUCE-IT, engendering much ongoing debate.
New approaches are needed in the management of hypertriglyceridaemia. Mendelian randomization studies have been a crucial tool in the search for novel therapeutic targets. Findings have driven ongoing clinical development focused on two promising targets: apolipoprotein CIII (ApoCIII) and angiopoietin-like 3 (ANGPTL3) 9-11. ApoCIII is a key regulator of TG-rich lipoprotein metabolism due to its inhibition of lipoprotein lipase and hepatic lipase, leading to decreased hepatic reuptake of TG-rich lipoproteins, as well as enhanced synthesis and secretion of very low-density lipoproteins (VLDL) from the liver. ANGPTL3 is exclusively expressed in the liver and inhibits TG hydrolysis by inhibiting lipoprotein lipase function. Experimental studies also provide evidence that intracellular ANGPTL3 has other potential nodes of action, including interfering with VLDL secretion, leading to a reduction in VLDL-TG 12, although more research is needed to elucidate the intracellular function of ANGPTL3 and its impact on lipoprotein metabolism.

Several novel agents targeting these key targets are now in phase II/III trials. These include antisense oligonucleotides, gene silencing approaches, as well as monoclonal antibody therapy. At this year’s virtual European Society of Cardiology Congress, data were presented for two novel agents: ARO-ANG3, a small interfering RNA 13,14, and vupanorsen, an N-acetyl galactosamine-conjugated ANGPTL3 antisense drug, the latter discussed in this month’s Focus 15. Both offer exciting promise in the search for new therapeutic approaches to targeting elevated TG.

Of course, the frontrunner in this field is pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα). There is good evidence that differentiates this agent from conventional fibrates (PPARα agonists), particularly with respect to its safety profile, specifically the lack of serum creatinine elevation, an issue for fenofibrate in routine clinical practice, particularly among patients with some degree of renal impairment 16,17. The critical test is whether lowering TG with pemafibrate in high-risk statin-treated patients with hypertriglyceridaemia reduces cardiovascular events. For this we await the results of PROMINENT 18, which is crucial to answering outstanding questions regarding the role of TG-rich lipoproteins in residual cardiovascular risk.

References

1. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011;123:2292–2333.
2. Ganda OP, Bhatt DL, Mason RP, et al. Unmet need for adjunctive dyslipidemia therapy in hypertriglyderidemia management. J Am Coll Cardiol 2018;72:330–343.
3. Budoff M. Triglycerides and triglyceride-rich lipoproteins in the causal pathway of cardiovascular disease. Am J Cardiol 2016;118:138–145.
4. Bhatt DL, Steg PG, Miller M, et al; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019;380:11-22.
5. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–1098.
6. Mach F, Baigent C Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Eur Heart J. 2020;41:111–188.
7. NLA position on the use of icosapent ethyl in high and very-high risk patients. Jacksonville, FL: National Lipid Association, 2019. https://www.lipid.org/nla/nla-position-use-icosapent-ethyl-high-and-very-high-risk-patients.
8. Skulas-Ray AC, Wilson PWF, Harris WS, et al. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation 2019;140:e673–e691.
9. JørgensenAB, Frikke-SchmidtR, NordestgaardBG, et al. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 2014;371:32–41.
10. TG and HDL Working Group of the Exome Sequencing Project NH, Lung, and Blood Institute Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014;371:22–31.
11. Stitziel NO, KheraAV, WangX, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol 2017;69:2054–2063.
12. Wang Y, Gusarova V, BanfiS, et al. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res 2015;56:1296–1307.
13. Ballantyne C. RNA interference targeting apolipoprotein C-III with ARO-APOC3 in healthy volunteers mimics lipid and lipoprotein findings seen in subjects with inherited apolipoprotein C-III deficiency. ESC Congress Virtual Meeting 2020.
14. Watts G. RNAi inhibition of angiopoietin-like protein 3 (ANGPTL3) with ARO-ANG3 mimics the lipid and lipoprotein profile of familial combined hypolipidemia. ESC Congress Virtual Meeting 2020.
15. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J 2020; doi:10.1093/eurheartj/ehaa689
16. Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a new selective PPARα Modulator: drug concept and its clinical applications for dyslipidemia and metabolic diseases. Curr Atheroscler Rep 2020;221:5.
17. Fruchart JC, Hermans MP, Fruchart-Najib J. Selective Peroxisome Proliferator-Activated Receptor Alpha Modulators (SPPARMα): new opportunities to reduce residual cardiovascular risk in chronic kidney disease? Curr Atheroscler Rep 2020;228:43.
18. Pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) [NCT03071692] https://clinicaltrials.gov/ct2/show/NCT03071692
?>