DEFINING TOMORROW'S VASCULAR STRATEGIES
×
Register now to R3i !
Your login
Your password
Confirm your password
Your email
I agree to receive the R3i newsletter
Mar 2024
The microvascular-macrovascular interplay: the next target?
Jan 2024
Targeting residual cardiovascular risk: what’s in the pipeline?
Sep 2023
Remnant cholesterol – evolving evidence
Jul 2023
Call to action on residual stroke risk
Apr 2023
Residual risk in 2023: where to?
Dec 2022
Lipid-related residual risk: lessons from PROMINENT?
Sep 2022
Residual cardiovascular risk: is apolipoprotein B the preferred marker?
Jul 2022
Residual vascular risk in chronic kidney disease: new options on the horizon
Feb 2022
Looking back at 2021 – what made the news?
Nov 2021
New ACC guidance addresses unmet clinical needs for high-risk patients with mild to moderate hypertriglyceridemia
Sep 2021
Residual vascular risk: What matters?
Aug 2021
Understanding vein graft failure: a role for PPARalpha in pathobiology
May 2021
Residual cardiovascular risk: how to identify?
Apr 2021
Metabolic syndrome and COVID-19
Mar 2021
Elevated triglyceride: linking ASCVD and dementia
Feb 2021
Does SPPARMα offer new opportunities in metabolic syndrome and NAFLD?
Jan 2021
Omega-3 fatty acids for residual cardiovascular risk: more questions than answers
Oct 2020
Targeting triglycerides: Novel agents expand the field
Jul 2020
Why multidrug approaches are needed in NASH: insights with pemafibrate
Jun 2020
Triglyceride-rich remnant lipoproteins: a new therapeutic target in aortic valve stenosis?
Mar 2020
Lowering triglycerides or low-density lipoprotein cholesterol: which provides greater clinical benefit?
Feb 2020
The omega-3 fatty acid conundrum
Dec 2019
Focus on stroke: more input to address residual cardiovascular risk
Jul 2019
International Expert Consensus on Selective Peroxisome Proliferator-Activated Receptor Alpha Modulator (SPPARMα): New opportunities for targeting modifiable residual cardiovascular risk
Nov 2018
Residual cardiovascular risk: triglyceride metabolism and genetics provide a key
Jul 2018
The clinical gap for managing residual cardiovascular risk: will new approaches make the difference?
Apr 2018
Residual cardiovascular risk: refocus on a multifactorial approach
Jan 2018
Addressing residual cardiovascular risk – back to basics?
Dec 2017
Residual risk of heart failure: how to address this global epidemic?
Oct 2017
Remnants and residual cardiovascular risk: triglycerides or cholesterol?
Jul 2017
Targeting residual cardiovascular risk: lipids and beyond…
Jun 2017
Why we need to re-focus on Latin America.
Apr 2017
Residual cardiovascular risk in the Middle East: a perfect storm in the making
Feb 2017
A global call to action on residual cardiovascular risk
Dec 2016
SPPARM?: more than one way to tackle residual risk
Oct 2016
Remnants linked with diabetic myocardial dysfunction
Sep 2016
New study links elevated triglycerides with plaque progression
Aug 2016
Atherogenic dyslipidaemia: a risk factor for silent coronary artery disease
Jul 2016
SPPARM?: a concept becomes clinical reality
Jun 2016
Remnant cholesterol back in the news
May 2016
Back to the future: triglycerides revisited
Apr 2016
Unravelling the heritability of triglycerides and coronary risk
Mar 2016
Will residual cardiovascular risk meet its nemesis in 2016?
Feb 2016
Tackling residual cardiovascular risk: a case for targeting postprandial triglycerides?
Jan 2016
Looking back at 2015: lipid highlights
Dec 2015
Legacy effects in cardiovascular prevention
Nov 2015
Residual cardiovascular risk: it’s not just lipids!
Oct 2015
Addressing residual vascular risk: beyond pharmacotherapy
Sep 2015
Back to basics: triglyceride-rich lipoproteins, remnants and residual vascular risk
Jul 2015
Beyond the PCSK9 decade: what's next?
Jun 2015
Targeting triglycerides: what lies on the horizon for novel therapies?
May 2015
Do we need new lipid biomarkers for residual cardiovascular risk?
Apr 2015
The Residual Risk Debate Hots Up: Lowering LDL-C or lowering remnant cholesterol?
Mar 2015
Call for action on stroke
Feb 2015
Triglycerides: the tide has turned
Jan 2015
Post IMPROVE-IT: Where to now for residual risk?
Dec 2014
R3i publishes new Call to Action paper: Residual Microvascular Risk in Type 2 Diabetes in 2014: Is it Time for a Re-Think?
Sep 2014
Targeting residual vascular risk: round-up from ESC Congress 2014 and beyond
Jul 2014
Lipid-related residual cardiovascular risk: a new therapeutic target on the horizon
Mar 2014
Non-HDL-C and residual cardiovascular risk: the Lp(a) perspective
Feb 2014
REALIST Micro, atherogenic dyslipidaemia and residual microvascular risk
Jan 2014
Looking back at 2013: what have we learned about residual vascular risk?
Dec 2013
Long-overdue US guidelines for lipid management oversimplify the evidence
Nov 2013
Triglycerides and residual cardiovascular risk: where now?
Oct 2013
How to target residual cardiovascular risk?
Sep 2013
The Residual Vascular Risk Conundrum: Why we should target atherogenic dyslipidaemia
Jul 2013
Targeting atherogenic dyslipidemia: we need to do better
Apr 2013
Is PCSK9- targeted therapy the new hope for residual risk?
Mar 2013
Scope for multifocal approaches for reducing residual cardiovascular risk?
Feb 2013
Renewing the R3i call to action: Now more than ever we need to target and treat residual cardiovascular risk
Jan 2013
Time for a re-think on guidelines to reduce residual microvascular risk in diabetes?
Jan 2013
Addressing the residual burden of CVD in renal impairment: do PPARa agonists provide an answer?
Jan 2013
Re-evaluating options for residual risk post-HPS2-THRIVE : are SPPARMs the answer?
Dec 2012
Dysfunctional HDL: an additional target for reducing residual risk
Nov 2012
Egg consumption: a hidden residual risk factor
Oct 2012
Call to action: re-emphasising the importance of targeting residual vascular risk
Jun 2012
Time to prioritise atherogenic dyslipidaemia to reduce residual microvascular risk?
Jan 2012
Residual vascular risk in chronic kidney disease: an overlooked high-risk group
Dec 2011
Introducing the HDL Resource Center: HDL science now available for clinicians
Oct 2011
Targeting reverse cholesterol transport: the future of residual vascular risk reduction?
Sep 2011
After SPARCL: Targeting cardio-cerebrovascular metabolic risk and thrombosis to reduce residual risk of stroke
Jul 2011
Challenging the conventional wisdom: Lessons from the FIELD study on diabetic nephropathy
Jul 2010
ACCORD Eye Study: a milestone in residual microvascular risk reduction for patients with type 2 diabetes
May 2010
Lipids and residual risk of coronary heart disease in statin-treated patients
Mar 2010
ACCORD Lipid Study brings new hope to people with type 2 diabetes and atherogenic dyslipidemia
Mar 2010
Reducing residual risk of diabetic nephropathy: the role of lipoproteins
Dec 2009
ARBITER 6-HALTS: Implications for residual cardiovascular risk
Nov 2009
Microvascular event risk reduction in type 2 diabetes: New evidence from the FIELD study
Aug 2009
Fasting versus nonfasting triglycerides: Importance of triglyceride-regulating genetic polymorphisms to residual cardiovascular risk
Jul 2009
Residual risk of microvascular complications of diabetes: is intensive multitherapy the solution?
Apr 2009
Reducing residual vascular risk: modifiable and non modifiable residual vascular risk factors
Jan 2009
Micro- and macrovascular residual risk: one of the most challenging health problems of the moment
Nov 2008
Treated dyslipidemic patients remain at high residual risk of vascular events

R3i Editorial

13 February 2018
Optimizing treatment benefit: the tenet of personalized medicine
Prof. Jean Charles Fruchart, Prof. Michel Hermans, Prof. Pierre Amarenco
An Editorial from the R3i Trustees
 
Prof. Jean Charles Fruchart, Prof. Michel Hermans, Prof. Pierre Amarenco Cardiovascular disease (CVD) poses an increasing global burden. While novel therapeutic approaches have undoubtedly reduced morbidity and mortality in the acute coronary setting, the corresponding increase in life expectancy in chronic ischaemic heart disease and heart failure has had a substantial impact on healthcare systems and society as a whole. In the European Union, the annual cost of CVD to the economy is €210 billion, about half of which is due to healthcare costs, 26% to productivity losses and 21% to the informal care of people with CVD. CVD is responsible for the loss of more than 26 million disability-adjusted life years (DALYs), representing about one-fifth of all DALYs lost.1 In cost-conscious healthcare systems, ageing populations, together with an increasing prevalence of cardiometabolic disease, mandates the need for new approaches to CVD management.

Personalized medicine offers a means to identify and tailor treatment to patients most likely to benefit. While the concept of personalized medicine has been discussed since the late 1990s, it was only with the advent of new technologies that it has become a clinical reality. This approach recognizes that patients should be managed according to their unique characteristics, rather than using a broader treatment strategy. Adoption of this approach enables better de?nition of patient subpopulations and thus optimal use of different therapies, which can reduce help to the cost of care.

Residual cardiovascular risk encapsulates the concept of personalized cardiovascular medicine. The initial focus has been on lipid-related residual cardiovascular risk;2 however, recent trials have provided new insights that allow us to categorize different types of residual cardiovascular risk. Both FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) and CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) have been instrumental in defining residual cardiovascular risk that is either cholesterol-related or inflammatory-related, respectively.3,4 As with all novel treatments, however, cost remains a major issue determining access. Expert groups have provided practical guidance to allow for the judicious use of PCSK9 monoclonal antibody therapy taking into account the residual low-density lipoprotein cholesterol (LDL-C) burden in high risk patients.5 Yet one of the unknown questions regarding this therapy is the extent of inter-individual variability in the LDL-C lowering response; indeed, it is only recently that attention was focused on the variability in response with statin therapy and how this impacts clinical outcome.6

An ideal means to ensure that the use of a novel treatment is optimized is with a simple one-off blood test to measure a relevant biochemical parameter. This month’s Landmark highlights an analysis from CANTOS which provides an illustration of such an approach.7 Briefly, the CANTOS investigators aimed to define those patients who derived the greatest cardiovascular benefit from canakinumab. The CANTOS patients had well controlled LDL-C levels at baseline with intensive statin therapy but had an inflammatory residual cardiovascular risk, as defined by high-sensitivity C-Reactive Protein (hs-CRP) levels ?2 mg/L (median 4.2 mg/L at baseline). In the Landmark report,(7 patient baseline characteristics (including age, sex, diabetes, smoking status, body-mass index, hs-CRP or lipid concentrations [LDL-C, triglycerides or high-density lipoprotein cholesterol]) did not define patient groups more likely to benefit from canakinumab treatment. In contrast, the on-treatment hs-CRP level 3 months after the first dose of canakinumab was informative. Patients with greater reduction in hs-CRP levels (i.e. 3- month hs-CRP levels <2 mg/L) derived a 25% reduction in the primary study endpoint, as well as 31% reductions in all-cause and cardiovascular death; however, those patients with a lower response (i.e. 3-month hs-CRP ?2 mg/L) derived no significant benefit from canakinumab. The authors proposed that by measuring hs-CRP levels 3 months after a single dose, clinicians would be able to differentiate those patients likely to benefit from this treatment, consistent with a personalized cardiovascular medicine strategy.

However, as shown in CANTOS and FOURIER, a proportion of these high-risk patients continue to experience cardiovascular events despite well managed inflammatory risk and LDL-C levels.3,4 This implies that there are other contributors to residual cardiovascular risk. This month’s Focus highlights remnant cholesterol, supported by a body of evidence from mechanistic, genetic and observational studies.(8.9) Further categorization of residual cardiovascular risk will undoubtedly improve management and reduce cardiovascular events; we just need the definitive data from trials to identify these residual risk factors.

References
1. Wilkins E, Wilson L, Wickramasinghe K et al. (2017). European Cardiovascular Disease Statistics 2017. European Heart Network, Brussels.
2. Fruchart JC, Davignon J, Hermans MP et al. Residual macrovascular risk in 2013: what have we learned? Cardiovasc Diabetol. 2014 Jan 24;13:26.
3. Sabatine MS, Giugliano RP, Keech AC et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376:1713-22.
4. Ridker PM, Everett BM, Thuren T et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377:1119-31.
5. Landmesser U, Chapman MJ, Stock JK et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J 2017; doi: 10.1093/eurheartj/ehx549. [Epub ahead of print].
6. Ridker PM, Mora S, Rose L; JUPITER Trial Study Group. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur Heart J;37:1373-9.
7. Ridker PM, MacFadyen JG, Everett BM et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 2017; doi: 10.1016/S0140-67361732814-3. [Epub ahead of print].
8. Wulff AB, Nordestgaard BG, Tybjærg-Hansen A. APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk. Mediation and meta-analyses of 137,895 individuals. Arterioscler Thromb Vasc Biol 2018; DOI: 10.1161/ATVBAHA.117.310473 [Epub ahead of print].
9. Dallinga-Thie GM, Kroon J, Borén J, Chapman MJ. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep 2016;187:67.
?>