DEFINING TOMORROW'S VASCULAR STRATEGIES
×
Register now to R3i !
Your login
Your password
Confirm your password
Your email
I agree to receive the R3i newsletter
Mar 2024
The microvascular-macrovascular interplay: the next target?
Jan 2024
Targeting residual cardiovascular risk: what’s in the pipeline?
Sep 2023
Remnant cholesterol – evolving evidence
Jul 2023
Call to action on residual stroke risk
Apr 2023
Residual risk in 2023: where to?
Dec 2022
Lipid-related residual risk: lessons from PROMINENT?
Sep 2022
Residual cardiovascular risk: is apolipoprotein B the preferred marker?
Jul 2022
Residual vascular risk in chronic kidney disease: new options on the horizon
Feb 2022
Looking back at 2021 – what made the news?
Nov 2021
New ACC guidance addresses unmet clinical needs for high-risk patients with mild to moderate hypertriglyceridemia
Sep 2021
Residual vascular risk: What matters?
Aug 2021
Understanding vein graft failure: a role for PPARalpha in pathobiology
May 2021
Residual cardiovascular risk: how to identify?
Apr 2021
Metabolic syndrome and COVID-19
Mar 2021
Elevated triglyceride: linking ASCVD and dementia
Feb 2021
Does SPPARMα offer new opportunities in metabolic syndrome and NAFLD?
Jan 2021
Omega-3 fatty acids for residual cardiovascular risk: more questions than answers
Oct 2020
Targeting triglycerides: Novel agents expand the field
Jul 2020
Why multidrug approaches are needed in NASH: insights with pemafibrate
Jun 2020
Triglyceride-rich remnant lipoproteins: a new therapeutic target in aortic valve stenosis?
Mar 2020
Lowering triglycerides or low-density lipoprotein cholesterol: which provides greater clinical benefit?
Feb 2020
The omega-3 fatty acid conundrum
Dec 2019
Focus on stroke: more input to address residual cardiovascular risk
Jul 2019
International Expert Consensus on Selective Peroxisome Proliferator-Activated Receptor Alpha Modulator (SPPARMα): New opportunities for targeting modifiable residual cardiovascular risk
Nov 2018
Residual cardiovascular risk: triglyceride metabolism and genetics provide a key
Jul 2018
The clinical gap for managing residual cardiovascular risk: will new approaches make the difference?
Apr 2018
Residual cardiovascular risk: refocus on a multifactorial approach
Feb 2018
Optimizing treatment benefit: the tenet of personalized medicine
Jan 2018
Addressing residual cardiovascular risk – back to basics?
Dec 2017
Residual risk of heart failure: how to address this global epidemic?
Oct 2017
Remnants and residual cardiovascular risk: triglycerides or cholesterol?
Jul 2017
Targeting residual cardiovascular risk: lipids and beyond…
Jun 2017
Why we need to re-focus on Latin America.
Apr 2017
Residual cardiovascular risk in the Middle East: a perfect storm in the making
Feb 2017
A global call to action on residual cardiovascular risk
Dec 2016
SPPARM?: more than one way to tackle residual risk
Oct 2016
Remnants linked with diabetic myocardial dysfunction
Sep 2016
New study links elevated triglycerides with plaque progression
Aug 2016
Atherogenic dyslipidaemia: a risk factor for silent coronary artery disease
Jul 2016
SPPARM?: a concept becomes clinical reality
Jun 2016
Remnant cholesterol back in the news
May 2016
Back to the future: triglycerides revisited
Apr 2016
Unravelling the heritability of triglycerides and coronary risk
Mar 2016
Will residual cardiovascular risk meet its nemesis in 2016?
Feb 2016
Tackling residual cardiovascular risk: a case for targeting postprandial triglycerides?
Jan 2016
Looking back at 2015: lipid highlights
Dec 2015
Legacy effects in cardiovascular prevention
Nov 2015
Residual cardiovascular risk: it’s not just lipids!
Oct 2015
Addressing residual vascular risk: beyond pharmacotherapy
Sep 2015
Back to basics: triglyceride-rich lipoproteins, remnants and residual vascular risk
Jul 2015
Beyond the PCSK9 decade: what's next?
Jun 2015
Targeting triglycerides: what lies on the horizon for novel therapies?
May 2015
Do we need new lipid biomarkers for residual cardiovascular risk?
Apr 2015
The Residual Risk Debate Hots Up: Lowering LDL-C or lowering remnant cholesterol?
Mar 2015
Call for action on stroke
Feb 2015
Triglycerides: the tide has turned
Jan 2015
Post IMPROVE-IT: Where to now for residual risk?
Dec 2014
R3i publishes new Call to Action paper: Residual Microvascular Risk in Type 2 Diabetes in 2014: Is it Time for a Re-Think?
Sep 2014
Targeting residual vascular risk: round-up from ESC Congress 2014 and beyond
Jul 2014
Lipid-related residual cardiovascular risk: a new therapeutic target on the horizon
Mar 2014
Non-HDL-C and residual cardiovascular risk: the Lp(a) perspective
Feb 2014
REALIST Micro, atherogenic dyslipidaemia and residual microvascular risk
Jan 2014
Looking back at 2013: what have we learned about residual vascular risk?
Dec 2013
Long-overdue US guidelines for lipid management oversimplify the evidence
Nov 2013
Triglycerides and residual cardiovascular risk: where now?
Oct 2013
How to target residual cardiovascular risk?
Sep 2013
The Residual Vascular Risk Conundrum: Why we should target atherogenic dyslipidaemia
Jul 2013
Targeting atherogenic dyslipidemia: we need to do better
Apr 2013
Is PCSK9- targeted therapy the new hope for residual risk?
Mar 2013
Scope for multifocal approaches for reducing residual cardiovascular risk?
Jan 2013
Time for a re-think on guidelines to reduce residual microvascular risk in diabetes?
Jan 2013
Addressing the residual burden of CVD in renal impairment: do PPARa agonists provide an answer?
Jan 2013
Re-evaluating options for residual risk post-HPS2-THRIVE : are SPPARMs the answer?
Dec 2012
Dysfunctional HDL: an additional target for reducing residual risk
Nov 2012
Egg consumption: a hidden residual risk factor
Oct 2012
Call to action: re-emphasising the importance of targeting residual vascular risk
Jun 2012
Time to prioritise atherogenic dyslipidaemia to reduce residual microvascular risk?
Jan 2012
Residual vascular risk in chronic kidney disease: an overlooked high-risk group
Dec 2011
Introducing the HDL Resource Center: HDL science now available for clinicians
Oct 2011
Targeting reverse cholesterol transport: the future of residual vascular risk reduction?
Sep 2011
After SPARCL: Targeting cardio-cerebrovascular metabolic risk and thrombosis to reduce residual risk of stroke
Jul 2011
Challenging the conventional wisdom: Lessons from the FIELD study on diabetic nephropathy
Jul 2010
ACCORD Eye Study: a milestone in residual microvascular risk reduction for patients with type 2 diabetes
May 2010
Lipids and residual risk of coronary heart disease in statin-treated patients
Mar 2010
ACCORD Lipid Study brings new hope to people with type 2 diabetes and atherogenic dyslipidemia
Mar 2010
Reducing residual risk of diabetic nephropathy: the role of lipoproteins
Dec 2009
ARBITER 6-HALTS: Implications for residual cardiovascular risk
Nov 2009
Microvascular event risk reduction in type 2 diabetes: New evidence from the FIELD study
Aug 2009
Fasting versus nonfasting triglycerides: Importance of triglyceride-regulating genetic polymorphisms to residual cardiovascular risk
Jul 2009
Residual risk of microvascular complications of diabetes: is intensive multitherapy the solution?
Apr 2009
Reducing residual vascular risk: modifiable and non modifiable residual vascular risk factors
Jan 2009
Micro- and macrovascular residual risk: one of the most challenging health problems of the moment
Nov 2008
Treated dyslipidemic patients remain at high residual risk of vascular events

R3i Editorial

2 February 2013
Renewing the R3i call to action: Now more than ever we need to target and treat residual cardiovascular risk
Prof. JC Fruchart, Prof. J. Davignon, Prof. M Hermans
Board of the R3i Trustees
 
Prof. JC Fruchart, Prof. J. Davignon, Prof. M Hermans This first post for 2013 highlights exciting research that re-emphasises the importance of atherogenic dyslipidemia to residual cardiovascular risk.


This month’s Focus article highlights novel evidence from Varbo and colleagues (2013)(1) that remnant cholesterol contained within triglyceride-rich lipoproteins is a causal factor for coronary artery disease. In the fasting state, remnant cholesterol is carried in very low-density lipoproteins and intermediate-density lipoproteins, and in the non-fasting state, these two lipoproteins plus chylomicron remnants. There is extensive mechanistic evidence supporting a role for triglyceride-rich lipoproteins in atherogenesis. Indeed, a recent expert consensus statement has drawn attention to the importance of triglyceride-rich lipoproteins in atherosclerosis, particularly in the context of cardiometabolic disease.(2)


What Varbo and colleagues add to the evidence-base is key. First, using a Mendelian randomization approach, a ‘natural randomized trial’, they showed a causal association between remnant cholesterol and risk for coronary artery disease. Each 1 mmol/L (39 mg/dL) genetic increase in remnant cholesterol was associated with a 2.8-fold causal risk for coronary artery disease. This increase in risk was higher than that based on observational data alone (Hazards ratio 1.4, 95% CI: 1.3 to 1.5), which would suggest that lifelong exposure through genetically elevated levels may have a larger effect on risk.


Second, this risk was independent of high-density lipoprotein cholesterol (HDL-C). Variants causing only lifelong low HDL-C were not associated with increased coronary risk. Thus, while HDL-C is typically associated with elevated triglyceride-rich lipoproteins, due to linked metabolic pathways, it does not appear to influence coronary risk. This second finding may help in at least partly explaining the failure of recent outcomes studies testing whether raising HDL-C concentration translates to reduced cardiovascular outcomes. In dal-OUTCOMES,(3) raising HDL-C with dalcetrapib, a cholesteryl ester transfer protein inhibitor which has negligible effect on low-density lipoprotein cholesterol (LDL-C), failed to improve cardiovascular outcomes in acute coronary syndrome patients receiving best evidence-based therapy, including statin. While it has been argued that this patient population may not have been ideal for study, this finding is not unexpected in the light of the work by Varbo and colleagues.


Evidence that remnant cholesterol in triglyceride-rich lipoproteins is causal for coronary risk reaffirms the importance of targeting therapeutic intervention beyond LDL-C. Indeed, this is the clear mission of the R3i. Implicit in this is the need to re-align lipid targets. Indeed, a recent review(4) questions whether LDL-C should be the primary lipid target, against the pandemic of obesity, diabetes and metabolic syndrome in the 21st century. Non-HDL-C – or even remnant cholesterol - may be a preferable target as this better reflects the burden of atherogenic lipoproteins. No doubt this debate will continue.


However, we also need to consider general preventative and therapeutic interventions especially in view of questions about niacin. In the spotlight is the potential of targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). Inhibition of PCSK9 leads to more liver LDL receptors, increased uptake of LDL from the circulation, and thus lower LDL-C concentration.(5) On risk/benefit analysis, humanized monoclonal antibody therapy targeting PCSK9 may be a preferable approach, with data from clinical trials showing reduction of >60% in LDL-C levels for at least 2 weeks after a single injection.


There is now information from key trials showing that targeting PCSK9 has benefits beyond LDL-C reduction. In the two phase II trials reviewed in Landmark Trials, treatment with either AMG-145 or SAR236553/REGN727 on top of statin therapy, not only improved LDL-C goal achievement but also lowered triglycerides, a marker of triglyceride-rich lipoproteins.(6,7) Thus, these data suggest a paradigm shift in the clinical management of dyslipidemic patients to reduce residual cardiovascular risk, which is likely to have clinical, economic and societal implications.


Undoubtedly the Residual Risk Reduction Initiative will continue to be at the forefront of activity targeting atherogenic dyslipidemia to reduce residual vascular risk.



References


1. Varbo A, Benn M, Tybjærg-Hansen A et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013;61:427–36.
2. Chapman MJ, Ginsberg HN, Amarenco P et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J 2011;32:1345-61.
3. Schwartz GC, Olsson AG, Abt M et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. New Engl J Med 2012; 367:2089-99.
4. Rizzo M, Barylski M, Rizvi AA, Montalto G, Mikhailidis DP, Banach M. Combined dyslipidemia: should the focus be LDL cholesterol or atherogenic dyslipidemia? Curr Pharm Des. 2012 Dec 26. [Epub ahead of print]
5. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism, Trends in Biochem Sci 2007;32:71-7.
6. Giugliano RP, Desai NR, Kohli P, et al on behalf of the LAPLACE-TIMI 57 Investigators. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 2012;380:2007-17.
7. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 2012;59:2344-53.
?>